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1. Introduction 
COSA is a finite volume, compressible, Navier-Stokes simulation code.  The core solver in COSA is 

a harmonic balance Navier-Stokes computational fluid dynamics solver.  The harmonic balance 

method is a nonlinear frequency-domain technique that reduces the runtime for calculating 

periodic solutions of ordinary differential equations with respect to the conventional time-

marching approach.  

 

COSA is used for accurate unsteady aerodynamic analysis of fluid flows and fluid/structure 

interaction problems (e.g. flow-induced structural vibrations) in renewable energy, mechanical 

and aeronautical engineering.   It is implemented in Fortran, and parallelised with MPI.  There are 

2D and 3D versions of COSA. 

2. Compilation, Setup and Input  
 

Compilation 

The latest version of the COSA source code (3D version) was compiled using the Intel compilers 

(default versions on each login node, so v15.0.2.164 on the main ARCHER system and v17.0.0.098 

on the KNL system) and the Cray MPI libraries.  These same compile flags were used for both 

versions (the ARCHER IvyBridge and ARCHER KNL executables): 
-132 -O3 -I$(MKLROOT)/include -fpp -m64 -r8  -D MPI -fno-fnalias 

 

The same link flags were used for both versions of the executable as well: 
-Wl,--start-group  $(MKLROOT)/lib/intel64/libmkl_intel_lp64.a 

$(MKLROOT)/lib/intel64/libmkl_core.a 

$(MKLROOT)/lib/intel64/libmkl_sequential. 

a -Wl,--end-group -lpthread –lm 

 

The KNL version was compiled on the ARCHER KNL login nodes, and therefore had the craype-

mic-knl module loaded (which sets up the correct compiler flags to generate executables for 

the KNL instruction set, i.e. –xMIC-AVX512).  The IvyBridge version was compiled on the 

ARCHER login nodes, and therefore has the module craype-ivybridge loaded. 

 

COSA produces a significant amount of output I/O (restart and data files).  For these benchmarks 

the large output I/O was turned off. 
 

Setup 

We ran the same test case the standard ARCHER nodes, the KNL quadrant flat (aoe:quad_0) 

nodes, and the KNL quadrant cache (aoe:quad_100) nodes.  There are only two KNL nodes 

configured in aoe:quad_0 mode, so we ran up to two nodes on the KNL system, and up to 34 

nodes on the main ARCHER system.  

 

Hyperthreading on the Xeon and Xeon Phi processors were tested for performance but 

hyperthreading gave no benefit for either system so the results are not presented here. 

Input 

We used an 800 block simulation with 3,689,952 grid cells (NREL5MW_GRID32_HB_SECTOR).  

The memory requirements for this simulation means that it cannot fit in MCDRAM (16 GBs) on a 

single node, or in the MCDRAM on two KNL nodes.  The input parameters are provided in 
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Appendix A.  The domain decomposition implemented in COSA splits the 800 blocks as evenly as 

possible across MPI processes.  This means that the following are sensible MPI process counts 

(i.e. divide the 800 blocks evenly) for this simulation: 

• 20 

• 25 

• 50 

• 100 

• 200 

• 400 

• 800 

 

As there are only 2 KNL flat nodes configured on the KNL system we ran up to 100 MPI processes 

on the KNL nodes, and up to 800 MPI processes on the ARCHER nodes. 

 

When running we aimed to split MPI processes across the available nodes as evenly as possible.  

This means on the KNL nodes using an aprun line like this: 
aprun –n 100 –N 50 ./cosa.mpi 

Ensuring that the 100 MPI processes were distributed evenly across the two KNL nodes, rather 

than having 64 MPI processes on the first node and 36 on the second. 

 

When running on the flat memory mode nodes we ran purely using main memory (DRAM), and 

we also ran using the MCDRAM using the numactl tool to target that memory.  As the use cases 

does not fit into the 16GB of MCDRAM (or even the 32GB of MCDRAM across the 2 flat nodes) we 

had to use the –p flag to request data be allocated in the MCDRAM in the first instance, falling 

back to the main memory when the MCDRAM is full (as opposed to the –m flag which forces all 

memory to be allocated in the MCDRAM and fails if the memory is exhausted). 

3. Performance Data 
The results presented below were collected using 3 independent runs for each data point, with 

the fastest results presented.  There was a less than 5% variation in runtime across the three data 

points. 

 

 

 
Figure 1: Performance of COSA on IvyBridge and KNL processors, comparing performance on 

number of MPI processes 
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Note, in Figure 1 the ARCHER and ARCHER Ideal results are almost identical, hence the reason 

that the ARCHER data points are not visible.  The Ideal data points are calculated by taking the 

runtime at the lowest process count and then dividing it by the factor of cores extra being used at 

the rest of the data points (i.e. If the initial data point is on 20 MPI processes, then at 50 MPI 

processes the Ideal data point is calculated by dividing the time on 20 processes by 50/20). 

 

When underpopulating (using less MPI processes on the node than available cores) we did not 

try to distribute the MPI processes on the KNL processor, we simply accepted the process 

binding that aprun provides as a default.  This means that for small process counts (i.e. 20 MPI 

processes) it may be possible to boost the performance somewhat by applying a more sensible 

process binding (i.e. using –d flag for aprun to distribute MPI processes more evenly across the 

quadrants on the KNL). 

 
Figure 2: COSA Performance on IvyBridge and KNL processors, comparing number of nodes used 

Note, for Figure 2 the KNL MCDRAM and KNL Cache results are very close when using more than 

one node, hence the reason the KNL MCDRAM points are not visible on 2, 3, and 4 nodes.   We 

only ran on up to 4 KNL nodes due to time constraints compiling this report.  The code should 

scale to a larger number of nodes (MPI scaling is not a significant constraint on COSA with test 

case, as demonstrated by the ARCHER scaling) but we have not investigate that yet. 

 

Number of Nodes DRAM Flat mode: numactl –p 1 Cache mode 

1 2933 2054 1658 

2 1496 704 733 
Table 1: Performance of the different memory configurations of the KNL system.  Runtime in 

seconds. 

4. Summary and Conclusions 
 

We can see from Figures 1 and 2 that the IvyBridge benchmarks show very good parallel scaling, 

with the performance of COSA being almost identical to the ideal performance. 

 

When comparing KNL performance to the ARCHER IvyBridge processors, we can see that on a 

process to process comparison the IvyBridge is faster (as shown in Figure 1).  We can complete 

this simulation in 1137 seconds on the ARCHER compute nodes using 50 MPI processes, 

compared to the best KNL node time of 2054 seconds.  An initial analysis would show the 

ARCHER IvyBridge nodes around 1.8x faster than the KNL.   
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However, as is demonstrated in Figure 2, if we compare on node to node basis, rather than MPI 

process to MPI process, we can see that the KNL can complete the simulation quicker than the 

IvyBridge processes.  50 MPI processes, which fit in one KNL node, complete in 2054 seconds, 

whereas the fastest simulation on one node of the main ARCHER system (which has 24 cores) is 

2327 seconds.  Furthermore, we can see that 2 KNL nodes can complete the simulation in 704 

seconds, compared to 1137 seconds for 3 ARCHER IvyBridge nodes.    The KNL system is 1.6x 

faster when using 2/3 of the nodes of the ARCHER system. 

 

The scaling from one to two nodes on the KNL system is superlinear, with the simulation 

completing ~3x faster on two nodes than it does on one KNL node.  However, this is likely to be 

the effect of more of the simulation data fitting into the MCDRAM on the KNL, providing a 

significant performance advantage compared to the single node case. 

 

Indeed, if we look at the performance of the KNL system in Figures 1 and 2 and Table 1 we can 

see that the MCDRAM gives significant performance benefits for this application.  For the single 

node case using the MCDRAM in flat mode and numactl –p 1 gives a performance benefit of 

~1.4x, whereas the MCDRAM used in cache mode gives an even bigger performance benefit of 

~1.8x.  Moving to two nodes, where more of the simulation data will fit in MCDRAM, we see a 

different outcome with the manual use of MCDRAM performing better than the cache mode 

(albeit both give much better performance than not using the MCDRAM and only a small 

difference in the performance between the different methods, 2.125x faster vs 2.04x faster). 

 

Therefore, we can see that the per process performance of COSA on the KNL is slower than on 

ARCHER, but on a node for node comparison the KNL is significantly faster, primarily due to the 

high bandwidth memory.  It is possible that for different test cases/benchmarks, where less of 

the data fits in the MCDRAM, this performance benefit would not be as pronounced.  
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Appendix A 
Input file for 3D Euler/NS code 

debug      model     flow-type  id         nblade 

n          sst       external   shawt      3 

gamma      reyno     pranl      machfs     alpha    beta 

1.4d0      7.7d+5    0.71d0     0.0335     0.00     20.00 

prant      tkefar    mutfar     wall       roughk 

0.9d0      1.d-4     0.1        menter     0.d0 

posprd     lim_ptke  prdlim     lim_pome   pr.type  turb.ord. 

n          y         10         y          minimum  second 

flow-mode  solver    rk option  nharms 

unsteady   hb        rkex       4 

move       freq.     xrotc      yrotc      frame 

rotating  -0.000593  0.d0       0.d0       relative 

irest      srest     cfl        cdff       lmax       iupdt      toler 

0          5000      1.5        4          20         1          1.d-12 

rkap       irs-typ   cfli       cutcirs    psi 

-1.        cirs_v1   3.0        0          0.0625 

cflt       cflit     ramp-opt   n(3)       n(2)       n(1) 

2.0        4.0       ramping1   2000       1000       500  

cfli(2)    cflit(2)  cfli(1)    cflit(1) 

1.5        2.0       0.1        0.1      

lim        epslim    cntrpy     etpfxtyp   entfxctf 

4          1.d-6     1.d0       0          0.3d0 

nlevel     nl_crs    nl_fmg     nstart     npre       npost      ncrs 

1          4         1          2          3          2          2  

flow-speed 
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nolomach 

tref 

288.2 

functional 

default 0.0 0.0 0.0 

lref1      lref2      lref3 

1.0        1.0        1.0 

1 

76  33 37 41 42 49 50 57 58 125 126 161 165 169 170 197 198 233 234 241 242 

341 342 351 356 357 362 371 372 385 390 395 396 405 406 413 418 455 460 46 

5 470 475 480 481 486 499 504 505 510 519 524 529 534 596 601 606 611 616 

621 626 631 636 640 645 650 662 667 672 676 681 686 700 705 710 715 720 725 

800 

 

Appendix B 
Timings data that the graphs in this report are based on. 

ARCHER IvyBridge: 

Number 

of 

Nodes 

Used 

Number 

of Cores 

Used 

Runtime 

(seconds) 

Ideal 

runtime 

(seconds) 

1 20   

1 24 2327 2327 

2 25 1591  

2 25 2212 2233.92 

2 25 2225 2233.92 

3 50 1137 1116.96 

3 50 992 1116.96 

5 100 583 558.48 

7 160 356 349.05 

9 200 287 279.24 

17 400 147 139.62 

34 800 73 69.81 
 

ARCHER KNL: 

Number of 

Nodes Used 

Number of 

Cores Used 

KNL 

Performance 

KNL Performance using 

MCDRAM directly 

KNL Performance 

using Cache mode 

1 20    

1 24    

1 25    

1 25    

1 25   2799 

1 50 2933 2054 1658 

1 50    

2 100 1496 704 733 

3 160   445 

4 200   353 
 


