
	
	
	

KNL	Performance	
Comparison:	HMB		

	
August	2017	

	
G.N.	Barakos	and	M.A.	Woodgate	

George.Barakos@Glasgow.ac.uk						Mark.Woodgate@Glasgow.ac.uk	

	
	

CFD	Laboratory	
School	of	Engineering	
University	of	Glasgow	

Glasgow,	G128QQ,	Scotland,	Uk	
	
	
	
	
	
	
	
	

	 	



	

	

2	

1. Compilation,	Setup	and	Input		
	

Compilation	

The	 code	 was	 compiled	 using	 the	 Intel	 C++	 compiler	 on	 both	 KNL	 and	 Xeon	 nodes.	 Version	
17.0.0.098	 was	 used	 on	 the	 KNL	 while	 the	 default	 version	 15.0.2.164	 was	 used	 on	 the	 Xeon.	
Currently	we	have	no	resources	 left	on	 the	Xeon	to	compare	 the	performance	of	 the	difference	
between	the	two	versions	of	the	Intel	compiler	but	it	is	not	expected	to	have	a	large	effect	on	the	
runtime	of	the	code.	The	compiler	optimization	option	used	was	-O3	and	the	compiler	directives	
for	 the	 source	 code	 where	 -D_NEW_ALLOC	 -D_METHOD2	 which	 is	 the	 most	 efficient	 memory	
layer	currently	implemented	in	the	parallel	code.	
	

Setup	

The	code	uses	MPI	for	parallel	communication	and	was	run	with	up	to	24	processes	per	node	on	
the	 Xeon	 and	 64	 processes	 per	 node	 on	 the	KNL.	 The	 performance	 across	 nodes	 shows	 linear	
speedup	from	the	Xeon	but,	as	it	is	currently	only	possible	to	run	on	two	KNL	nodes,	there	are	not	
enough	 data	 points	 to	 draw	 any	 conclusions	 on	 the	 performance	 across	 nodes	 for	 the	 KNL	
system.	The	memory	option	used	on	 the	KNL	 system	was	quad_100	where	 all	 the	MCDRAM	 is	
used	to	cache	the	main	memory.		
	

Input	

Two	three-dimensional	benchmarks	were	used.	One	was	used	to	test	the	parallel	performance	on	
a	 small	 number	 of	 cores	 (less	 than	 576)	 and	 the	 other	 was	 to	 test	 scaling	 on	 a	 much	 larger	
number	of	cores	(up	to	100,000).	The	first	test	problem	is	turbulent	flow	around	a	cube	with	576	
blocks	each	of	size	21x21x21	while	the	second	is	a	cavity	calculation	with	65536	Blocks	each	of	
size	 21x21x21.	 Both	 problems	 were	 fully	 turbulent	 and	 solved	 using	 Osher’s	 approximate	
Riemann	solver	with	MUSCL	extrapolation	and	the	k-w	two	equation	turbulence	model.	

	 	



	

	

3	

2. Performance	Data	
	
Table	1	shows	the	effect	of	block	size	on	the	performance	of	HMB	on	6	cores	on	a	local	compute	
node	 (Glasgow	K-Node	 system	 )	 for	 one	 implicit	 iteration.	 For	 the	 6-block	 case,	 the	 boundary	
conditions	and	the	halo	exchange	were	substantially	fast.	However,	this	is	a	minor	part	of	the	cost	
of	an	 iteration,	and	even	 though	 the	amount	of	work	 for	each	case	 is	 the	same,	 the	 iteration	 is	
10%	 faster	 on	 smaller	 blocks.	 This	 is	 due	 to	 the	 block	 better	 fitting	 into	 the	 cache	 on	 the	
processors	and	can	be	thought	of	adding	tiling	within	the	bigger	blocks.	
	
	

Computational	subroutines	 576	21x21x21	blocks	 6	81x81x121	blocks	
Boundary	conditions	and	Halo	 0.038357s	 0.008444s	

Initialize	and	time-step	 0.221877s	 0.217172s	
Jacobian	and	Residual	 3.548065s	 4.003661s	

Preconditioner	 0.716755s	 0.781016s	
Linear	solver	 1.893830s	 2.116967s	
Total	time	 6.448413s	 7.155373s	

Table	1:	Performance	of	different	parts	of	HMB	using	the	same	size	mesh	split	 into	different	block	
sizes	running	on	6	cores.	

Table	2	uses	the	same	local	cluster	and	shows	the	good	scaling	of	the	code	for	up	to	16	cores	for	
both	the	implicit	and	explicit	iteration	schemes.	
	

Glasgow	K	
Nodes	
(Cores)	

	 CPU	time	per	
explicit	iteration	

CPU	time	per	
implicit	iteration	

1	 	 9.663s	 33.18s	
2	 	 4.849s	 16.10s	
4	 	 2.548s	 8.959s	
6	 	 1.897s	 6.487s	
8	 	 1.611s	 5.469s	
16	 	 0.8975s	 3.089s	

	
Table	2	Performance	data	for	running	HMB	on	different	numbers	of	cores	on	a	Glasgow	K	Node.	

Table	3	shows	the	results	of	the	second	test	case	running	on	ARCHER	using	up	to	16384	cores.	
The	code	scales	very	well	with	a	16	fold	increase	in	cores	producing	a	15.32	reduction	in	
iteration	time.	
	

Archer		Cores	(Nodes	used)	 CPU	per	explicit	
iteration	

CPU	per	Implicit	
Iteration	

Half	Cavity	Calculation	 	 	
1024	 1.3995s	 5.2401s	
2048	 0.7414s	 2.7589s	
4096	 0.3681s	 1.3898s	
8192	 0.1855s	 0.6773s	
16384	 0.0989s	 0.3419s	

Table	3	Performance	data	for	running	HMB	on	testcase	2	on	ARCHER	

	
Table	4	shows	the	performance	of	HMB	on	the	ARCHER	KNL	nodes.	The	single	core	performance	
is	 very	weak	 compared	 to	 an	 Intel	 Xeon	 core	 even	 considering	 the	 lower	 clock	 frequency.	 For	
example,	it	is	over	4	times	slower	than	a	single	Cirrus	core.	However,	the	parallel	efficiency	scales	
well	 for	 up	 to	 64	 cores	making	 good	 use	 of	 all	 the	 extra	 cores.	Hence	when	 comparing	 a	 fully	
loaded	 KNL	 node	 vs	 a	 fully	 load	 Cirrus	 node	 the	 performance	 gap	 drops	 to	 around	 30%.	 The	
scaling	for	KNL	is	similar	to	the	scaling	shown	for	the	other	HPC	systems.	
	
	



	

	

4	
KNL	quad_100	

Cores	
CPU	time	per	explicit	

iteration	
CPU	time	per	implicit	

iteration	
1	 35.47s	 96.03s	
2	 18.80s	 49.46s	
4	 9.464s	 24.87s	
8	 4.762s	 12.35s	
16	 2.408s	 6.298s	
32	 1.206s	 3.176s	
64	 0.6375s	 1.770s	

192	(3	Nodes)	 0.2198s	 0.5945s	
	
Table	4:	Performance	data	for	running	HMB	on	different	numbers	of	cores	on	an	ARCHER	KNL	
compute	node	in	quad_100	configuration	using	testcase	1.	

	
Table	 5	 shows	 the	 performance	 of	 HMB	 on	 Cirrus.	 It	 should	 be	 noted	 here	 that	 the	 GCC	 6.2	
compiled	code	produced	very	inconsistent	results	with	the	times	of	both	the	explicit	and	implicit	
iteration	varying	by	up	to	a	factor	of	4	per	iteration.	It	was	found	that	this	effect	was	worst	when	
running	 on	 just	 a	 few	 cores	within	 a	 compute	 node.	 However,	 even	 the	 case	 of	 a	 fully	 loaded	
computer	node	produced	 results	where	 the	CPU	 time	per	 iteration	varied	more	 than	normal	–	
there	are	minor	differences	 in	 iterations	 times	depending	on	which	 code	branch	 is	 followed	 in	
Osher’s	Riemann	 solver.	 	Hence	 the	 results	 present	 here	 are	 for	 the	 intel	 compiler	 17.0.2.	 The	
single	CPU	scaling	is	reasonable	up	until	about	12	cores,	as	has	been	seen	on	ARCHER	nodes,	but	
increasing	the	number	of	cores	above	this	has	very	 little	effect	on	the	CPU	time	of	an	 iteration.	
The	 external	 node	 scaling	 is	 good	 with	 a	 sixteen-fold	 increase	 in	 cores	 producing	 a	 14.85	
reduction	in	CPU	time	per	iteration.	
	

Cirrus	Cores	(Nodes	used)	 CPU	per	explicit	
iteration	

CPU	per	Implicit	
Iteration	

1	(1)	 6.578s	 21.926s	
2	(1)	 3.337s	 11.270s	
4	(1)	 1.763s	 6.453s	
8	(1)	 1.005s	 3.768s	
16	(1)	 0.6576s	 2.754s	
18	(1)	 0.6373s	 2.699s	
36	(1)	 0.3203s	 1.364s	

Half	Cavity	Calculation	 	 	
256	 5.248s	 26.888s	
512	 2.769s	 13.668s	
1024	 1.438s	 6.941s	
2048	 0.7271s	 3.5131s	
4096	 0.3792s	 1.8183s	

Table	5:	Performance	data	for	running	HMB	on	different	number	of	cores	on	Cirrus	computer	nodes	
using	both	test	cases.	

	
Table	6	has	the	performance	numbers	from	ARCHIE-WeST	and	it	should	be	noted	that	the	ratio	
between	the	cost	of	the	explicit	and	Implicit	iterations	is	very	different	than	all	the	other	systems.	
Here	 the	 ratio	 is	1.5	where	all	 the	other	nodes	 the	 ratio	 is	 closer	 to	3.5.	 In	 fact,	 the	 time	spent	
calculating	the	just	the	residual	in	the	explicit	scheme	is	the	same	as	the	time	taken	to	calculate	
both	the	residual	and	form	the	Jacobian	matrix	where	the	extra	computational	work	should	mean	
it	takes	2.5	times	longer.	The	scaling	is	much	better	within	the	node	and	this	is	probably	due	to	
the	slower	than	expected	single	core	performance.	
	

ARCHIE-WeSt		Cores	(Nodes	used)	 CPU	per	explicit	
iteration	

CPU	per	Implicit	
Iteration	

1	(1)	 35.314s	 50.560s	
2	(1)	 19.476s	 25.278s	



	

	

5	
4	(1)	 9.0927s	 14.878s	
6	(1)	 6.2429s	 10.541s	
8	(1)	 4.7257s	 7.7089s	
12	(1)	 2.8791s	 4.8169s	
24	(2)	 1.485s	 2.4544s	
36	(3)	 1.0296s	 1.6467s	

Half	Cavity	Calculation	 	 	
512	 	 	
1024	 	 	

Table	6:	Performance	data	for	running	HMB	on	different	number	of	cores	on	ARCHIE-WeST	compute	
nodes	using	both	test	cases.	

	

3. Summary	and	Conclusions	
It	seems	that	the	GCC	v4.8.2	compiler	does	not	do	a	good	job	at	producing	an	efficient	executable	
when	 using	 on	 ARCHIE-WeST	 and	 that	 the	 some	more	 testing	 of	 different	 available	 compilers	
should	be	undertaken	to	build	a	better	executable.		
	
HMB	 scaling	within	 a	 node	 is	 effective	 up	 until	 about	 12	 cores	 after	which	 there	 is	 very	 little	
reduction	in	wall	clock	time	per	 iteration	with	the	addition	of	more	cores.	The	scaling	between	
nodes	is	excellent	with	great	and	90%	efficiency	seen	on	both	ARCHER	and	Cirrus.		
	
Although	the	single	core	performance	of	a	KNL	node	was	around	450%	slower	than	a	Cirrus	node	
when	 they	were	 both	 fully	 load	 the	KNL	node	had	 reduced	 this	 gap	 to	 around	30%.	 From	 the	
speedup	curves	 it	 also	appears	 that	HMB	could	be	able	 to	make	use	of	 extra	 cores	with	a	KNL	
node	while	it	is	already	at	the	limit	of	effective	use	of	the	Intel	Xeon	cores.	


