ARCHER eCSE Final Report

eCSE Number:

eCSE02-3

eCSE Title:

Scalable automated parallel PDE-
constrained optimisation for dolfin-
adjoint

Date of Submission:

11 September 2015

PI and Co-Is:

Patrick E. Farrell
Michele Weiland

Technical staff member(s):

Dominic Sloan-Murphy

Author(s) of this document:

Dominic Sloan-Murphy
Patrick E. Farrell

Michele Weiland
Project start date: 01 September 2014
Project completion date: 01 July 2015
Total number of funded project 8

months:

Publishable Summary

1.1 Achievement of objectives

The project objectives were divided into four work packages, each with an
associated deliverable. Success is measured by the quality and completeness
of these deliverables.

Work package 1

Parallel nonlinear optimisation using PETSc

Deliverable

dolfin-adjoint with support for the optimisation algorithms in PETSc
Achievement

Successfully delivered:

* dolfin-adjoint with a user interface to PETSc/TAO optimisation
algorithms employing petsc4py.

* dolfin-adjoint with refactored interface and test suite for optimisation
packages IPOPT and Optizelle, consistent with the new PETSc
functionality.

During the project, we realised that we had a major opportunity to
dramatically improve the performance of the optimisation algorithms in
PETSc. The optimisation algorithms, like all other open-source algorithms,
formulate the optimisation problem in R”n, using the Euclidean inner
product to measure distances, angles, convergence, etc. Dr Farrell realised
that by modifying the optimisation algorithms to use an appropriate
function-space inner product (e.g. L*2, or H*1), mesh independence of the
optimisation algorithm could be achieved: the number of optimisation
iterations would remain constant as the mesh is refined, rather than
increasing with mesh size.

This was deemed of great interest and importance, and effort was therefore
redirected from other WPs to support the implementation. As will be seen
later, this work has had a dramatic impact on our ability to solve large
problems. As a result of this redirection, the following additional deliverables
were attained:

* Mesh-independent convergence support added to LMVM, BLMVM,
NLS and NTR optimisation algorithms in PETSc.
* New Python bindings for associated functions.

Work package 2

Parallel /0

Deliverable

dolfin-adjoint with parallel I/O checkpointing

Achievement
Successfully delivered:

* dolfin-adjoint with existing XML-based checkpointing replaced with a
parallel HDF5 alternative.

Work package 3

Memory optimisation

Deliverable

Memory optimised dolfin-adjoint
Achievement

Not delivered: effort redirected to WP1.

Work package 4
Benchmarking and Report
Deliverable

Final eCSE report
Achievement

Collected in this document

1.2 Project description

The dolfin-adjoint package enables the automated optimisation of problems
constrained by partial differential equations (PDEs). These problems are
ubiquitous in engineering with examples including the design of wings to
maximise lift, identification of the optimal placement of marine turbines for
renewable tidal energy, the design of the cheapest bridge that will support its
load, and the imaging of underground structures for petroleum exploration.

Prior to this project, dolfin-adjoint was limited to serial optimisation libraries
with no concept of parallel linear algebra. Data was therefore required to be
shared with all ranks and optimisation calculations performed redundantly.
Now, the software is equipped with a Python-based interface to the parallel
algorithms included in PETSc (the “Portable, Extensible Toolkit for Scientific
Computation”), thereby eliminating the performance penalty associated with
gathering the data and lifting the upper bound on the size of problems able to be
considered.

The algorithms within the PETSc TAO (Toolkit for Advance Optimization)
module were themselves extended to improve the efficiency of their solves.
Specifically, the ability for a user to provide a Riesz map for the important LMVM,
BLMVM, NTR, and NLS [1] solvers was added, allowing for use of a more
appropriate inner product for a problem and enabling mesh-independent
convergence, i.e. the number of iterations no longer depends on the complexity
of the mesh.

This addition has had a dramatic effect on the performance of said solvers.
Results for the Poisson mother problem [2] with a given mesh at various levels of
random refinement, are provided in Table 1-1 below.

Number of random BLMVM Iterations BLMVM Iterations
refinements required for original required for new
algorithm algorithm
0 565 10
1 1095 4
2 Failed at 1463 4
3 - 4

Table 1-1: Effect of Riesz

As an illustrative example of the improvement in efficiency, Figure 1-1 and
Figure 1-2 give a visualisation of the convergence for the Poisson mother
problem after 40 BLMVM iterations on a given mesh without the Riesz map
specified and 3 iterations with the map correctly set.

Figure 1-1: 40 iterations without Riesz

Figure 1-2: 3 iterations with Riesz

To the best of our knowledge, no other open-source package has managed to
attain mesh independence in the bounded case (BLMVM), making this a
significant achievement.

Additionally, this project investigated the checkpointing 1/O performance of
dolfin-adjoint, necessary during simulations with long time horizons on
platforms with limited memory.

The previous implementation gathered all data to a single root process which
would write out in XML format. This was replaced with a scalable HDF5-based
solution built on work from a previous dCSE project involving the
implementation of parallel I/0 for the FEniCS software package [3].

Looking at a sensitivity analysis of the heat equation on a Gray's Klein bottle, the
results in Figure 1-3 were observed on ARCHER.

480 MPI ranks, base mesh 256x256, 192 time steps

100

O
o
|

)3

EXML

(S35 e)
nre Spent

E HDF5

1%i

= N (O8]
© < Teta
1 1

(e}
|

Read Write

Figure 1-3: Klein Bottle Test - I/0 Comparison

In this case, read times attain a speed up factor of approximately 3 with the new
HDF5 approach while writes reach near 5 times faster. This opens the door to
solving problems which have been bottlenecked by the limited I/0 bandwidth of
a single process or by the overheads of having to communicate all data to that
single rank.

Links and References:

[1]: TAO 3.6 Users Manual, Retrieved 18 August 2015, from:
http://www.mcs.anl.gov/petsc/petsc-current/docs/tao_manual.pdf

[2]: Optimal control of the Poisson equation, Retrieved 18 August 2015, from:
http://www.dolfin-adjoint.org/en/latest/documentation/poisson-
mother/poisson-mother.html

[3]: University Distributed CSE Project Report Expressive and scalable finite
element simulation beyond 1000 cores, Retrieved 18 August 2015, from:
http://www.hector.ac.uk/cse/distributedcse/reports/UniDOLFIN /UniDOLFIN/
dcse_richardson_wells.html

Project Website:
http://www.dolfin-adjoint.org/en/latest/

1.3 Summary of the software

All software outputs from the project have been merged into the master
branches of the associated software, located at:

dolfin-adjoint (Primary)
https://bitbucket.org/dolfin-adjoint/dolfin-adjoint

PETSc
https://bitbucket.org/petsc/petsc

petsc4py Fork
https://bitbucket.org/petsc/petsc4py

A pull request was made to have changes merged into the main PETSc and
petsc4py codebases. The work of the project has been accepted into the main
“master” branch all codes involved.

The new functionality will be incorporated into a future PETSc release and made
available to the entire user community.

On ARCHER, PETSc is fully supported and maintained by Cray. It is expected the
version containing the output of this project will be installed as part of the
regular update cycle of the Cray XE/XK Programming Environment. The
enhanced petsc4py and dolfin-adjoint dependent on this release will
subsequently be installed as central ARCHER packages.

Prior to this, ARCHER users will be able to access the software via the public
repositories and employ the system development tools to install a local version
for their own use.

Future science and impact

2.1 Performance Improvement

Name of simulation and code:

dolfin-adjoint: checkpointing I/0

Description of computational runs
required:

CPU-time before eCSE work per
simulation (kAUs):

CPU-time after eCSE work per
simulation (kAUs):

Estimate of overall financial
saving/benefit:

Comment (including any assumptions,
number of users/runs estimates are
based on, etc.):

The XML-based checkpointing was
identified as a potential performance
bottleneck following the scalability of
the optimisation algorithms.

An HDF5-based implementation was
completed before this bottleneck had
significant impact.

2.2 Additional Functionality

Name of simulation and code:

dolfin-adjoint
PETSc/TAO

Description of computational runs
required:

Poisson mother optimisation problem,
16x32 mesh, level 2 random
refinement.

CPU-time before eCSE work per
simulation (kAUs) to reach a given
level of accuracy:

Failure at 1463 iterations

CPU-time after eCSE work per
simulation (kAUs) to reach a given
level of accuracy:

Convergence at 4 iterations

Estimate of overall financial
saving/benefit:

Comment (including any assumptions,
number of users/runs estimates are
based on, etc.):

New results can be achieved which
could not have been achieved before as
software is now using correct inner
product via the Riesz mapping.

2.3 Sustainability of Software

Comment:

Action which has been made quicker
(e.g. porting of code, integration of new
feature):

Maintenance of test cases,
troubleshooting/debugging.

Time taken before eCSE work per
simulation:

Time taken after eCSE work per
simulation:

Estimate of overall human effort
saving/benefit:

Comment (including any assumptions,
number of users estimates are based
on, etc.):

The new interface to PETSc is
consistent with the interfaces to other
dolfin-adjoint solvers. Users can easily
switch between them with minimal
modification to their test cases, saving
much development time.

The link to PETSc increases the
potential user base significantly,
increasing the level of expertise
surrounding the software. Additional
avenues of support are now available
in the form of the very active PETSc
mailing lists.

2.4 Usability of software

Action which has been made quicker
(e.g. compilation of code, integration of
new feature):

Development of test cases.

Time taken before eCSE work per
simulation:

Significant work required to manually
interface the package with petsc4py.

Time taken after eCSE work per This effort is no longer required.
simulation:

Estimate of overall human effort
saving/benefit:

Comment (including any assumptions, | The new interface between dolfin-
number of users estimates are based adjoint and PETSc/TAO greatly
on, etc.): increases the interoperability and
general usability of the parallel
optimisation algorithms.

2.5 Intrinsic value of the software

The new function-space-aware implementations in PETSc provide functionality
not offered by any other open source project, significantly increasing the worth
of the software within the academic and general open source community.

2.6 Enabled Science and Impact

The initial proposal for this project identified six concrete examples of the
impact this project would have on the world scientific community:

* Eddy parameterisation in quasigeostrophic turbulence — letter of
support from Dr James Maddison (Edinburgh).

* [dentification of triggering and limit cycles in thermoacoustic
systems — letter of support from Dr Matthew Juniper (Cambridge).

* Inverse problems in cardiac electrophysiology — letter of support
from Dr Molly Maleckar (Simula).

* Automated urinalysis for diagnosis of urinary tract infections (UTIs)
— letter of support from Dr Irwin Zaid (Speckle Technologies).

* Layout optimisation of tidal turbines for renewable energy — letter of
support from Dr Matthew Piggott (Imperial College London).

» Shape optimisation of acoustic waveguides — letter of support from
Dr Stephan Schmidt (Wurzburg).

The most common limiting factor identified in these cases was the all-gathering
of the parameter vector onto each core. This has been eliminated by the new
interface to the parallel algorithms in PETSc. The software now allows for far
larger parameter vectors, enabling new science in these communities.

