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Abstract

We present concepts and rationale behind our ∆ software, a library to administer

and query triangle-based meshes. ∆ identifies overlaps, contact points and separation

of different meshes. Its simplistic programming interface is supported by algorithms

which can exploit modern vector architectures as they combine optimistic iterative

geometric algorithms with robust if-based code kernels, which scale on multicore

architectures through an intra-library parallelisation plus a strict functional code de-

sign, and which support by on-the-fly caching of geometric information. The code

has successfully been used in a Discrete Element Method (DEM) and immersed

boundary context. Some case studies allow users to quickly start experiments with

the code base.

1. Introduction

Handling triangulated meshes is an important task in many scientific simulation codes.

To import a mesh—typically from a CAD model or a mesh repository—is one of the

first steps in many simulation pipelines, and the coding of appropriate import routines,

of mesh mappings onto existing compute grids, of routines that identify where meshes

touch is a fundamental technical task. Economic common sense dictates to use a mature

software component here. In many traditional setups, the mesh import or generation,

respectively, is a sole preprocessing step. Its efficiency thus has not highest priority.

Our work however meanders around two use cases where computational efficiency

of the mesh handling is key: Our first example from Discrete Element Methods (DEM).

Here, rigid particles as we find them in granulates or powder collide with each other

and exchange momentum. We assume that the particles are represented by triangulated

meshes [2, 4]. In each and every time step, the meshes thus have to be compared to

each other and we have to identify collisions, i.e. contact situations. Non-monolithic

fluid-structure interaction with moving meshes can often been read as an generalisation

of such a setup. One mesh wraps alike a cushion around the other. It bumps against,

i.e. collides with the other mesh. Our second example is dynamically adaptive mesh

refinement (AMR) for mesh-based solvers of partial differential equations that are com-
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bined with an immersed boundary method [6]. As the simulation mesh or the embedded

domain change, the simulation has to identify the distance between newly created degrees

of freedom and a boundary mesh on-the-fly to impose the correct boundary terms.

Both demonstrator examples highlight on the functional side the need for mature, easy

to use meshing interfaces which allow users to code mesh input and interaction func-

tionality. On the non-functional side, they clarify that it becomes important to deliver

geometric information effectively on modern supercomputer architectures. Both demon-

strators hereby rely on the same functionality: They handle at least two meshes and they

have to know how far these meshes are apart. For an immersed boundary method, such

information feeds directly into the computation. For a DEM method, such information

identifies contact between structures once we assume that any proximity closer than ε

denotes contact.

∆ proposes a simplistic programming interface (API) to load meshes, to run primitive

mesh modifications such as translations, scaling or rotations, and to compute distances

as well as to detect contact and overlap between two meshes. The latter are passed an ε

parameter, and they return for given input data all contact points, i.e. all points where the

input data and the mesh subject of study are closer than ε. Input data can be simple points

(for the immersed boundary approach, e.g.) or meshes themselves. Our implementation

wraps around The Open-Asset Imports-Lib [1] and thus can load various different CAD

formats. We focus on triangular meshes here.

Our code is optimised towards modern HPC architectures through various techniques

hidden behind the API: (i) We flatten the triangle-edge-vertex graph describing the mesh

into a plain series of vertex triples as SoA. The resulting data exhibits some memory

overhead as vertices might be replicated, but it can be streamed through the cores without

indirect, non-continuous memory access. (ii) We introduce a hybrid collision detection

algorithm which combines an iterative Newton-based collision detection with traditional

(if-based) distance calculations. The iterative approach vectorises. In cases where it

does not converge, we fall back to the robust solve. This results in a vectorised, robust

algorithm. (iii) The realisation behind the API runs parallel on multicore systems. It

parallelises over triangles. Furthermore, the API itself is thread-safe, i.e. can be invoked
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from various threads concurrently, and—for point-wise queries as they are used for im-

mersed boundary methods—offers routines that accept whole sets of query points over

which it parallelises, too. (iv) Finally, ∆ introduces spatial caching: Upon demand or as

preprocessing step, we wrap an octree data structure around the mesh data. If geomet-

ric proximity data in an ε-environment is of interest, distance queries are first compared

against the octree. This allows us to identify results further away than ε from any geome-

try quickly. As the octree can be built upon demand, its accuracy and overhead anticipate

the structure of the collision queries. For a domain decomposition approach, the cache

meta data structure automatically follows the decomposition. To the best of our knowl-

edge, no other geometry library provides this unique combination of efficient realisation

ingredients.

The remainder is organised as follows: We first introduce our API (Section 2.) before

we discuss details of the used algorithms (Section 3.). Experimental data in Section 4.

highlight the potential of our ∆ library. We summarise our insight and close the discussion

with Section 5.. An appendix (online version on software homepage only) offers how-to

information. The software is freely available from [3].

2. Terminology and user programming interface

∆ has a very simple C++ application programming interface (API). At its core is the

creation of a ∆ mesh instance delta::Mesh. Codes hold one mesh instance per mesh

administered. While meshes can internally have any representation, they all provide a

flatten operator which returns the mesh as a sole sequence of triples of vertices.

Example: Flattening (Figure 1) Let mesh A be as graph. Arrays (x0, x1, x2, . . . , x5),

(y0, y1, y2, . . . , y5) and (z0, z1, z2, . . . , z5) hold the vertices. A second array of index triples

((0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5)) introduces a mesh on top of these vertices. The flat-

tened representation consists of three arrays ((x0, x1, x2), (x1, x2, x3), (x2, x3, x4), . . .),

((y0, y1, y2), (y1, y2, y3), (y2, y3, y4), . . .) and ((z0, z1, z2), (z1, z2, z3), (z2, z3, z4), . . .).

In the flattened representation, a mesh is converted into a sole stream of double coordi-
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Figure 1: Two meshes A and B are checked against each other. An enumeration for the
vertices of A is given. We denote the three shortest distances.

nates. The vertices are not indexed but replicated, i.e. the mesh topology is lost. If we

however compare a point to the mesh, we basically can run through the flattened repre-

sentation in one rush. There’s no lookup required anymore.

A contact point in ∆ is a point in-between two meshes which is closer to both of

them than a given ε. ∆ provides various contact identification routines in a namespace

delta::contactdetection. They are passed the flattened geometry representations

plus the ε, and they return a C++ vector of contact points. The latter are instances of

a class delta::ContactPoint, and each instance represents its point in space plus a

normal which points to the closest geometry. Contact points always are right in the middle

of two geometries, i.e. if we invert the normal, we make it point to the other geometry. The

normal by construction is smaller than ε. Each contact point furthermore holds a marker

that identifies whether it is inside the two geometries or in-between. If this marker is set,

the two meshes do overlap.

Example: Duplicated/close contact points (Figure 1) Contact points are derived on a

per-triangle-pair basis. Let the three shortest distances from the figure denote the only

triangle combinations that are closer than two times a given ε. The result of a contact

detection invocation is four contact points: When we check A’s triangle 1,2,3 against the

bottom triangle from B, the lowest distance/contact point is detected. The next check
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against a triangle from B yields the normal rooted in A’s point 3. Exactly the same point

is found again when we compare A’s triangle 3,4,5 next.

On top of the contact point detection, ∆ provides routines to filter out redundant contact

points. The filter is a simple iterative sort: We pass in a set Cin of contact points plus a

parameter h > 0. It returns a set Cout of contact points. The contact point with the smallest

normal in Cin is contained in Cout. From hereon, we construct Cout running over Cin with

ascending normal length: A contact point from Cin is made member of Cout if no point

from Cout is closer then the given threshold h. Such a simple redundancy elimination is

useful for a mesh with mesh size h for example. We obtain the closest contact point plus

all other points that are not closer than h to this guy. Redundant points within the mesh

thus are eliminated, but we keep multiple contact points for concave meshes.

∆’s core set of routines is supplemented by mesh stretching, scaling and rotation rou-

tines. We offer a small set of basic DEM potentials for dash spring-pot potentials [2, 4],

as well as a set of primitive construction and mesh import routines.

3. Algorithms

3.1. Vectorised triangle comparison

∆’s contact point detection is solely based upon triangles. It does, in its current ver-

sion, neither exploit any mesh topology/hierarchy nor identify higher-dimensional con-

tact manifolds. We thus assume, for the following discussion, that two sets of triangles

T1 and T2 are to be compared, and the algorithm compares all triangles from the former

to the latter. Its complexity is O(|T1| · |T2|).

Bounding sphere comparisons Our code supports a range of comparison routines. The

simplest type of comparison is the check of two spheres against each other. While this

comparison is sufficient for solely sphere-based geometry models as they are predominant

in DEM, e.g., we emphasise another important role of the sphere comparisons: Compar-

isons of triangulated objects can be very costly. It is thus reasonable to wrap them into a
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sphere pre-check. If the bounding spheres of two objects do not overlap, we can skip all

further triangle comparisons.

Comparison-based The straightforward approach to compare two triangles is based

upon some simple geometric considerations: The closest point between two triangles

is either defined by a point from one triangle and a face of the other triangle, or it is

found between the edges of two triangles. Once all distances between these geometry

combinations are known, we can construct the closest distance by a simple minimum

selection. If this distance is smaller than 2ε, two triangles yield a contact point by our

definition.

A
B

X

C
D

Figure 2: Geometric checks for a triangulated volume approaching a plane (at the bottom)
spanned by four triangles A,B,C,D. The comparison of triangle X to A finds the contact
point (shortest line) through a projection of a vertex of X onto A. Comparing X to C first
obtains the same point projecting the vertex onto the plane spanned by C, but then it has
to move the anchor point on the plane into C. When we compare X to B, the closest line
is found between two edges.

The implementation of this algorithm in ∆ is a simple sequence of geometric compar-

isons. We compare each point of the two triangles against the other triangle. This gives us

2 · 3 combinations. For the comparison of the three edges of the two triangles, we obtain

3 · 2 · 1 combinations to check. We exploit symmetries. The number of geometric setups
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that are to be compared totals to 15 (Figure 2).

While a constant complexity/variant count per se is nothing bad, we note that the

individual comparisons require additional checks. Whenever we project a vertex from

one triangle onto the plane spanned by the triangle counterpart, we next have to check

whether an orthogonal projection ends up within the triangle. Otherwise, the closest

point-to-triangle point hits an edge. Analogous considerations holds for edges.

The code is heavy on if statements. We study its vectorisation behaviour in [4] and

demonstrate that it struggles to vectorise and to stream data through the core. However,

this code variant always yields the exact result. It is robust.

An iterative approach An alternative approach casts both comparison triangles into

their barycentric representation defined by four scalars a1, a2, a3, a4 ∈ [0, 1]. Let the

triangles be written as points T1(a1, a2),T2(a3, a4) ∈ R3 in the three-dimensional space.

The closest point between the two triangles is given as

min
a1,a2,a3,a4

1
2
|T1(a1, a2) − T2(a3, a4)|22 subject to a, b, c, d ∈ [0, 1].

We cast this minimisation problem with a Lagrangian αL > 0 multiplier into a weak

formulation

min
a1,a2,a3,a4

1
2
|T1(a1, a2) − T2(a3, a4))|22 + αL

∑
i

max(ai − 1, 0) + max(−ai, 0) (1)

and solve it via a Newton method. The system can become notoriously ill-conditioned

for close-to-parallel triangles and thus requires some regularisation of the underlying Ja-

cobian. We add a diagonal matrix scaled with an additional regularisation weight αR. All

matrix inverts from (1) then can be written down explicitly as we are solely working in

the three-dimensional space. With max using simple masking within the chip, the code

almost lacks ifs.

We obtain an iterative algorithm with high arithmetic intensity—notably if we run the

Newton for multiple triangles in one rush. Its problem is that it is not robust even though

the majority of triangle-to-triangle comparisons converges after less than four iterations.
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A hybrid approach It is easy for (1) to track the residual per step. The resulting New-

ton update size is a reasonable indicator for convergence if Lagrangian and regularisation

parameters αL, αR are well-chosen. If this error estimator is big after a fixed number of

steps, we may assume that the iterative scheme has not yet converged and is potentially

ill-conditioned.

Empirical studies show that the iterative scheme is by more than a factor of 10 faster

then the geometric checks, if we constrain the number of Newton steps to 4–8. ∆’s hybrid

approach thus runs a prescribed number of Newton steps. Hardcoding the iterations has

the nice side effect that we can unroll these steps. After the fixed number of iterations, it

checks the termination criterion. If it exceeds a prescribed error threshold, the code falls

back to the pure geometric checks.

We end up with a geometric comparison duet which is empirically by a factor of two

slower than a purely iterative approach, but, different to this one, is absolutely stable; and

still more than a factor of 5 faster than an if-based only approach [2, 4]. The iterative

approach is computationally more demanding than its geometric counterpart. The gain

in speed is thus solely due to vectorisation which renders this approach promising for

state-of-the-art architectures.

3.2. Multicore parallelisation

Geometry-based solvers typically rely on a powerful spatial decomposition to obtain par-

allel code. It nevertheless is important for a geometry library to introduce further paral-

lelism that notably is lightweight and thus targets multicores. ∆’s parallelisation relies

on OpenMP though we note that it is straightforward to combine OpenMP with Intel’s

Threading Building Blocks [5] or further alternatives.

Intra-library parallelisation Within ∆, we provide both routines to compare individ-

ual triangles with each other as well as routines which compare whole triangle sets T1

and T2 to each other.

A straightforward parallel realisation decomposes the input data: We compare the first

triangle from T1 against all triangles from T2, while we concurrently check the second
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triangle against all counterparts, and so forth. Dynamic scheduling allows the runtime

to react to load imbalances which arise from triangle counts that are not multiples of

the cores as well as from the hybrid geometry solves: If geometric re-checks become

necessary for a comparison, the affected comparison is more expensive than a counterpart

where the Newton solve has terminated successfully.

Experimental evidence on KNL and Broadwell architectures suggests that the intra-

library parallelisation starts to upscale once the individual mesh consists of 40–80 trian-

gles. For geometries with lower resolution, the intra-library parallelisation cannot yield a

observable speedup.

Functional realisation and further parallelisation approaches All building blocks

in ∆ that have been discussed for far are realised without side effects: There are no global

states in the library. As a result, the routines are thread-safe. In this context, we re-

fer notably to [2] where we use the routines that inspired ∆ within a multiscale domain

decomposition and obtain reasonable scaling even for dynamically adaptive meshes.

3.3. Spatial caching

The vertices of meshes often exhibit some spatial compactness. If we study particles, they

typically do not span the whole computational domain. Codes that sample a geometry

over a domain typically do not traverse this domain randomly. They do not jump around.

As a result, we may assume that many consecutive geometric queries arise from within a

certain subdomain.

If a triangle or point is checked against a mesh, and we find out that the distance

between the two of them is larger than an ε + δ, then a subsequent query for a triangle or

point which is within a δ area are around the first triangle can be answered straight away:

there is not contact point.

To exploit this observation, we enable ∆ to build up an octree. Each octree’s node

holds a minimal distance scalar to the actual mesh. The octree’s leaves then point to the

actual triangles of the mesh. For geometric queries, we traverse the octree top-down,

i.e. from coarse to fine resolution and validate if the query can be answered straight away
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with a “there is no contact”. We use the spatial layout of input and comparison mesh

to construct this octree on-the-fly. If the octree suggests that there might be contact, we

assemble the contact result bottom-up from the tree: Our code identifies all octree nodes

which might link to mesh triangles yielding collision points, runs the comparisons per

node, and then concatenates all results. We can read the octree approach as an adaptive

bounding box pre-check.

If codes hold many meshes (geometric) objects, ∆ holds one octree per mesh. If

codes run a domain decomposition, the octree construction implicitly follows this domain

decomposition. If a mesh is modified, we found it the easiest to throw away the octree

and to reconstruct it from scratch following any follow-up geometric queries. We note

that the octree construction is, per definition, not functional. Instead of a sophisticated

semaphore concept, we thus provide a veto mechanism for on-the-fly octree refinement

and an a priori octree construction function.

4. Demonstrators
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Figure 3: Scalability of the triangle-to-triangle comparisons in a DEM context where two
particles collide. From [2].

Intra-library parallelisation studies In [2], we compare two particles colliding with

each other. The collision is based upon a spring-dashpot potential. Insights from this pa-
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per have been directly transferred into the ∆ library. We summarise that the library has a

working internal parallelisation. However, this parallelisation yields reasonable speedup

if and only if the individual meshes (particles here) are of reasonable triangle count (Fig-

ure 3). The library can become an HPC building block. It does not yield scalability per

se. The same paper validates that the library can be used within a multithreaded environ-

ment. If ∆’s internal scalability is combined with an additional, outer level of parallelism,

we have demonstrated excellent scalability on up to 24 cores on Broadwell and 32 cores

on Intel Knights Landing (KNL).

Table 1: Hardware counter results for characteristic single-core runs on the Sandy Bridge
chip. BF means brute force. Table from [4].

Metric Stream BF Penalty BF+SIMD Penalty+SIMD

Runtime (s) 6.71 22.49 15.47 7.78 4.54

MFLOPS/s 1,245 962 1,073 2,808 3,202

CPI 0.48 0.48 0.49 0.91 1.26

Bandwidth MB/s 14,120 408 579 902 1,424
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Figure 4: Left: Typical number of required Newton iterations if we equip the iterative
scheme with a dynamic termination criterion. Right: Scalability of three core comparison
approaches. From [4] and [2].
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Single core performance studies Single core performance studies are published in [4].

On a Broadwell, the paper compares all data to the Stream TRIAD benchmark. While

both the penalty and the geometric approach (named brute force as all potential geomet-

ric variants have to be checked) obtain a speedup from vectorisation, the penalty-based

approach exhibits better streaming behaviour and obtains higher flop rates resulting in

lower time-to-solution.

Algorithmic tuning The insight that a fixed, small number of Newton iterations is suf-

ficient for most triangle configurations is validated in Figure 4; again for DEM. The out-

liers where triangles yield ill-conditioned Newton iterations are so few that one cannot

see them in the plot. Nevertheless, a robust geometry library has to be prepared for them.

Our hybrid robust scheme provides this and still exhibits advantageous scaling behaviour

(Figure 4, too).

5. Conclusion, outlook, and about the code

∆ is a simple, small library for geometry handling as it is for example required for im-

mersed boundary methods or Discrete Element Methods. The focus of this library is not

an extensive set of features. We did write an HPC code building block. Experimental

validation as well as further details about ∆’s use in a DEM context is published in [2, 4].

About the code The code as well as all documentation are available through www.

peano-framework.org or other URLs linking to the PI’s software archive. A nightly build

updates all source code documentation. It is realised through doxygen. While archive

downloads are built each night, too, we provide free repository access for users who sign

up. The actual software is hosted at the Leibniz Supercomputing Centre (LRZ) in a git

repository.

We currently have two versions of the code: Our “legacy” code is the code with all the

advanced features described in the present document. A new code base that’s currently

rolled out through the repository is a rewrite of this legacy/proof-of-concept software

www.peano-framework.org
www.peano-framework.org
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which focuses on clean, minimalist interfaces and simplicity.

Outlook and limitations Our current ∆ release provides solely support for flat meshes,

i.e. meshes without hierarchy. It is subject of current research how to exploit meshes

which exhibit hierarchy. We also actively work on further extensions which do not rely

on third-party discretisations of spline-based geometric models.

The code at the moment exclusively supports point contact. Region overlaps are not

identified by the code base. This is subject of further work, too. We finally note that ∆ has

no inherent MPI support. We rely on the the idea that the meshes either are held globally

on each rank or that the partitioning and mesh distribution is organised by the user. We do

however build up our cache trees on-demand and thus follow any domain decomposition

implicitly.
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