
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:
www.archer.ac.uk/training/feedback/online-course-feedback.php

Introduction to
Version Control

(Part 1)
ARCHER Virtual Tutorial

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• Version Control – do it yourself?
• Version Control Systems

•  Benefits
•  Common version control systems
•  Core concepts and terminology

• Simple demonstration using SVN
• Word of warning

Version Control – do it yourself?

paper_draft

paper_draft2

paper_draft2_alternative

paper_draft3 paper_draft4

paper_draft4_Alice

paper_draft4_Bob

paper_final

Version Control – do it yourself?

initial_code

code_that_works

code_other_algorithm

code_faster code_latest

code_new_functionality_Alice

code_changes_Bob

code_final

Version Control – do it yourself?

initial_code

code_that_works

code_other_algorithm

code_faster code_latest

code_new_functionality_Alice

code_changes_Bob

code_final

merge branch

What’s the problem?
•  Forced to manually keep track of

•  The differences between multiple versions of a file
•  How multiple versions of a file are related (e.g. through branching &

merging)
•  How versions of different files are related (e.g. code dependencies)
•  Which versions of which files should be used (together) as a basis

for further work

Do we record this information in filenames and directory
structure?* Inside the files themselves? Elsewhere?

*http://www.phdcomics.com/comics/archive.php?comicid=1323

What’s the problem?
•  Forced to merge versions manually:

•  To produce a version that meets specific requirements by
combining content from multiple versions

•  To combine changes made due to editing copies of a file in different
locations (e.g. personal laptop & work desktop)

•  To combine changes made by multiple authors who have each
added useful content to their own copies of a file

• Again need to keep track of merge results for further work

What’s the problem?
Do-it-yourself version control:
•  Time consuming
• Requires constant care and attention
• Prone to human error
• Unmanageable for many files / many versions
• Everybody has their own system

•  Difficult to collaborate

Version Control Systems
Focus on version control systems developed and optimised
for plain text files:

Ø Simple text documents
Ø Any file containing human-readable markup - source code
Ø Numerical data formatted as plain text (e.g. .csv files)

Less useful for managing non-plain-text (i.e. binary) data:
•  Documents encoded in a binary format (e.g. PDFs, MS Office)
•  Executables
•  Images & video
•  Numerical data stored in a binary format (e.g. HDF5, netCDF)

Version Control Systems
Version control systems are software tools that:

• Provide a framework to record meaningful information
about file versions in a consistent, systematic way

• Help automate the tracking of versions and the
differences between them by recording the state of a set
of files at a given time as a snapshot and providing easy
access to these snapshots

Version Control Systems
Version control systems are software tools that:

• Provide a safety net whilst making changes (can recover
previous versions of snapshotted files)

• Capture and preserve dependencies between particular
versions of files, e.g. source code

Version Control Systems
Version control systems are software tools that:

• Allow for easy duplication and synchronisation of files in
multiple locations
•  Avoids error-prone manual transferring of files
•  Can act as a backup of your data
•  Easily work on different machines

•  Enable collaborative work on same set of files at the

same time, automatically identifying contributions from
different authors

Version Control Systems
Automatic change tracking facilitates branching:

•  Modify one or more files with a particular goal in mind (e.g. new
feature, bug fix) by creating a new branch

•  Do this for multiple goals independently and in parallel (e.g. by different
authors) by creating multiple branches

•  At a later date we can combine differently-modified versions of
the same files by merging them

•  Allows us to pick and choose changes developed in isolation
on different branches and integrate them as desired

Version Control Systems
We can use version information to enable
• Reproducible computational research

•  Report exactly which version of code produced published results

•  Testing and development work
•  Track which version of code works, runs faster, etc.

Version Control Systems
Can access and use version control tools

•  From the command line in a shell session
•  Common version control tools installed by default in Linux and OS X

•  Using a standalone client application with a graphical user interface
•  Through a web-based interface

Common Version Control Systems
• CVS (Concurrent Versioning System)

•  Mature and established, not as popular any more

• SVN (Apache Subversion)
•  Successor to CVS, widespread
•  More flexible and efficient than CVS, e.g. at handling binary files

• Git
•  Newer, faster, powerful features, very popular for many new

software projects thanks partly to GitHub website

• Mercurial
•  Like Git but simpler in some ways to use

Core concepts & terminology
Concepts and terms common to many version control systems:

Repository
Log
Working copy / working directory
Check out / clone
Merge
Update
Commit / check in
Branch

Core concepts & terminology
Concepts and terms common to many version control systems:

Repository

•  Archive of all recorded snapshots of file versions
•  Captures the changes between successive recorded versions of a file
•  Keeps track if versions of a file are related through merging or

branching
•  Includes a log

Log
•  Metadata describing when, by who, and optionally why each snapshot

was recorded

Core concepts & terminology
Working copy

•  Your local copy of (some of) the files in the repository
•  Located on the machine you’re currently using regardless of where

the repository itself is stored
•  Shows your current local versions of files
•  Your versions differ from the latest versions in the repository:

•  if you have made changes, or
•  if somebody has updated the repository with newer versions

Core concepts & terminology
Working copy

•  May contain files that are not yet recorded in the repository
•  Unrecorded files and changes to existing files are not automatically

propagated to the repository – this needs to be done explicitly
•  Can have multiple working copies, e.g. on multiple machines

Core concepts & terminology
Check out / clone

•  Obtain an initial working copy by duplicating (part of) a repository
locally on your machine

• Merge

•  Combine two versions of a file or set of files into one
•  Can lead to conflicts
•  Version control systems will point out conflicts but you need to think

and decide how to resolve these

Core concepts & terminology
Update

•  Update your working copy with the latest snapshot in the repository
•  Attempts to merge the latest versions of files in the repository into the

corresponding files in your working copy
•  Can lead to merge conflicts

Commit / check in

•  Take a snapshot of the current state of one or more files in your
working copy and record it in the repository.

•  Transfers the following data from your working copy to the repository:
•  Changes you made to these files since the last time they were synchronised

with the repository
•  A message commenting on these changes (the commit message)

Core concepts & terminology
• Branch

•  Create logical copies of one or more files in the repository
•  Typically done to pursue a particular direction of work such as, in

software, a new feature / functionality
•  Newly spawned copy versions are tracked automatically as a

distinct set and synchronised via commits and updates
independently of the original parent files

•  File versions on one branch can be integrated with versions of the
sames files on another branch through merging

Commit messages…
• Shown in the log
• Comments meant to inform use of the repository by

•  Yourself in future (hours, days, weeks, months, years from now)
•  Current and future collaborators

• Should be a meaningful summary explaining the reason
for the commit, giving appropriate level of context / detail

•  Typical format is
•  One line summary
•  Further details

• Avoid meaningless messages:
•  http://xkcd.com/1296/

Where do repositories live?
Repositories can live

•  on a publicly hosted website (e.g. Bitbucket, GitHub)
•  on a server at your institution
•  on your own machine

More about this in Part II

Basic demonstration using SVN
• Going to:

•  Check out part of an existing repository
•  Inspect the log
•  Compare past changes
•  Make a change to a file and commit this new version to the

repository
•  Create a new file and commit it
•  Delete the new file from the repository
•  Undo the change to the first file

Word of warning
• Version control systems are a powerful tool, not a magic

bullet

• You need to think and decide how to manage your work

• When working collaboratively, need to communicate

Scripted practical & next tutorial
•  A scripted practical using SVN will appear on the ARCHER

website before the start of the second virtual tutorial on version
control.

•  This will help you put into practice the concepts from this
presentation.

•  In Part II we will

•  Explore differences between centralised and distributed models of
version control and local and remote repositories

•  Demonstrate the basics of Git and how it compares e.g. to SVN
•  Consider which version control system you may want to use

