

Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at: www.archer.ac.uk/training/feedback/online-course-feedback.php

Multi-resolution modelling of biological systems in LAMMPS

ARCHER Virtual Tutorial, 19th Oct 2016 Iain Bethune <u>ibethune@epcc.ed.ac.uk</u> Oliver Henrich <u>ohenrich@epcc.ed.ac.uk</u>

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these images.

Outline

- ARCHER eCSE programme
- Implementation of Dual Resolution Simulation Methodology in LAMMPS
 - ELBA force-field
 - Implementation in LAMMPS
 - Performance testing
 - Summary

ARCHER eCSE programme

- Funding for the ARCHER user community to develop software
 - Implementation of algorithmic improvements within an existing code
 - Improving the scalability of software on higher core counts
 - Improvements to code which allows new science to be carried out
 - Porting and optimising a code to run efficiently on ARCHER
 - Adding new functionalities to existing codes
 - Code development to take a code from a Tier-2 (Regional) or local university cluster to Tier-1 (National) level bringing New Communities onto ARCHER
- Projects typically 3 months 1 year
- Next call closes 31st Jan 2017

ARCHER eCSE programme

- More information on the ARCHER website:
 - https://www.archer.ac.uk/community/eCSE/
 - Project Reports
 - How To Apply
 - List of funded projects
- Webinar from last month:
 - https://youtu.be/WRGsNKWrNIc

Implementation of Dual Resolution Simulation Methodology in LAMMPS

- eCSE04-7 (January 2015)
- PI: Prof. Jonathan Essex, Southampton
- 6 person-months funded: August 2015 August 2016
- Objective: enable fast and reliable calculations with the ELBA force-field in LAMMPS
 - New integrators
 - Parallel load balancing

ELBA Force-field

- ELBA = ELectrostatics-BAsed coarse grained forcefield
 - Orsi & Essex, PLoS ONE 6(12) 2011
- Originally for studying lipids
 - Also applied to other biomolecules
- Explicit solvent
 - One dipolar bead per water molecule
- Allows for atomistic detail e.g.
 - Using CHARMM parameters

138 atoms -> 15 CG beads

ELBA Force-field

- Implemented in BRAHMS-MD (Biomembrane Reduced-ApproacH Multiresolution Simulator for Molecular Dynamics):
 - https://code.google.com/archive/p/brahms-md/
 - Limited user base, single developer -> not sustainable
 - No parallelisation -> small systems
- Why LAMMPS?
 - Main interaction types already implemented
 - Support for spherical particles
 - r-RESPA multiple timestepping
 - Flexible, scalable, large user base

- LAMMPS fix nve/sphere integrator does not conserve energy well
- Better scheme to integrate rotational d.o.f. DLM
 <u>Dullweber, Leimkuhler and McLachlan, JCP 107(15) 1997</u>
- 1. Construct rotation matrix Q from dipole (taken as the body-fixed z-axis)
- 2. In body-space, apply rotations around each local axis:

$$\omega_{b} = Q\omega_{s}$$

$$R_{1} = R_{x}(\frac{\delta t}{2}\omega_{1}), \quad \omega = R_{1}\omega, \quad Q = R_{1}^{T}Q$$

$$R_{2} = R_{y}(\frac{\delta t}{2}\omega_{2}), \quad \omega = R_{2}\omega, \quad Q = R_{2}^{T}Q$$

$$R_{3} = R_{z}(\delta t\omega_{3}), \quad \omega = R_{3}\omega, \quad Q = R_{3}^{T}Q$$

$$R_{4} = R_{y}(\frac{\delta t}{2}\omega_{2}), \quad \omega = R_{4}\omega, \quad Q = R_{4}^{T}Q$$

$$R_{5} = R_{x}(\frac{\delta t}{2}\omega_{1}), \quad \omega = R_{5}\omega, \quad Q = R_{5}^{T}Q$$

3. Finally, compute the new dipole:

 $\boldsymbol{\mu}_s = \boldsymbol{Q}^T[001] \cdot \|\boldsymbol{\mu}\|$

• 4000 ELBA water beads, 10fs timestep, 20ps NVT, 20ps NVE

fix thermostat all langevin 303 303 200 48279 omega yes

• 128 DPMC molecules in water, 75ps NVT, 100ps NVE

Image from Sam Genheden

- DLM integrator enabled by an optional argument:
 - fix nve/sphere ... update dipole/dlm
- Also for other ensembles:
 - Constant temperature / NVT (Nosé-Hoover)
 - fix nvt/sphere ... update dipole/dlm
 - Isothermal-isobaric (Nosé-Hoover / Parrinello-Rahman)
 - fix npt/sphere ... update dipole/dlm
 - Isenthalpic (Parrinello-Rahman)
 - fix nph/sphere ... update dipole/dlm

Load balancing schemes:

÷	 		

http://lammps.sandia.gov/doc/ balance.html

None

Shift

RCB

- Problem for dual-resolution simulations!
 - 90% of computational cost is force evaluation
 - Not all particles are the same
 - r-RESPA some forces are computed more frequently than others

- New load balancing metrics:
 - Weighting by particle groups

- New load balancing metrics (subsequently added by LAMMPS developers):
 - Weighting by number of neighbors weight neigh
 - Weighting by compute time weight time
 - Doesn't account for the different particles types contributing to different parts of the computation (pair, bond, kspace, neigh)
 - Weighting by arbitrary user-defined variables weight var

Performance testing

- Bovine Pancreatic Trypsin Inhibitor (BPTI) dual-resolution model:
 - 882 atoms, CHARMM force-field
 - 6136 water molecules, ELBA beads

- No r-RESPA
- 1fs timestep
- Up to 10%
 speedup over non-weighted balance

Performance testing

- 1:4 r-RESPA ratio
- Water pair forces
 + dihedral forces
 computed every
 fourth step
- Larger weightings better (2.5-3.0)
- Up to 36%
 speedup over nonweighted balance

Performance testing

archer

- 1:8 r-RESPA ratio
- Larger weightings better (3.0-4.0)
- Up to 65% speedup over nonweighted balance

Summary

- DLM integrator for NVE/NVT/NPT/NPH dynamics
 - Stable for water up to 16fs timestep
 - Included in LAMMPS stable release 30 Jul 2016
- New load balancing metrics
 - Better performance for r-REPSA and hybrid pair force
 - Include in LAMMPS patch release 27 Sep 2016
- More information
 - Technical Report: <u>http://www.archer.ac.uk/documentation/white-papers/lammps-elba/lammps-ecse.pdf</u>
 - Tutorials, references, discussion: https://sgenheden.github.io/Elba/

Installed on ARCHER module load lammps/elba

ARCHER eCSE05-10 Project

- Adding Multiscale Models of DNA to LAMMPS (09/2015 08/2016)
- Dr Oliver Henrich (PI, UoE), Prof Davide Marenduzzo (Co-I, UoE), Dr Thomas Ouldridge (Co-I, Imperial College London)
- Overview:
 - Implemented oxDNA coarse-grained DNA model for single- and double- stranded DNA into LAMMPS code
 - Implemented new Langevin-type rigid-body integrators
 - o Software available

from CCPForge (<u>https://ccpforge.cse.rl.ac.uk/gf/project/cgdna</u>) soon as LAMMPS USER-package

Currently adapting utility software of oxDNA standalone version

From DNA to Chromosomes

- Haploid human genome contains 3.2 billion base pairs organised in 23 chromosomes
 - Diameter of DNA strand = 2×10^{-9} m
 - Total length of DNA in human cell = 2m
 - Diameter of spherical 'blob' of DNA in human cell = 2×10^{-6} m
- Hierarchical organisation
 - o Histone octamer
 - Nucleosome core particles 200 bps
 - o 10 nm beads-on-a-string
 - o 30 nm chromatin fibre
 - smallest loop in chromatin fibre 50,000 bps

Atomistic Simulation of DNA

- Good for capturing fast conformational fluctuations and protein-DNA binding
- Usually limited to a few 1000 base pairs
- Phenomena on large time and length scales, e.g. DNA supercoiling or nucleosome positioning are permanently out of reach

Coarse-grained simulation with oxDNA

- Must deliver correct longitudinal and torsional persistence length, electrostatics, if sequence-specific correct melting temperature, elastic constants ...
- oxDNA: top-down approach of a CG model, nucleotides modelled as rigid bodies (DOF are COM & quaternion)
- Parameterize interaction between nucleotides with 6 independent interactions (7 for implicit electrostatics)

oxDNA Force Field

- **Backbone**: FENE (finite extensible nonlinear elastic) springs
- Excluded volume: Lennard-Jones potential
- Stacking: harmonic angle x Morse potential
- **Cross-stacking**: harmonic angle x harmonic distance potential
- **Coaxial stacking**: harmonic angle x harmonic distance potential
- Hydrogen bonding: harmonic angle x Morse potential

oxDNA Force Field

- Smoothed, truncated and modulated forms of the above
- 1 bonded interaction (backbone), 5 pair interactions (excluded volume, stacking, hydrogen boding, cross-stacking, coaxial stacking)

For full details see Thomas Ouldridge, Coarse-grained modelling of DNA and DNA self-assembly, DPhil, University of Oxford, 2011.

Backbone-base vector

Parallel Performance

Craypat Performance Analysis

60 kbp benchmark

- Single node
 - Nlocal 5000
 - Nghost 1300
 - MPI < 5% (LMP)
 - compute 86% (LMP)
 - o acos 12%
 - \circ q_to_exyz 11%
- 2048 MPI-tasks
 - \circ Nlocal 60
 - o Nghost 225
 - MPI > 50%
 - o compute 43% (LMP)

Craypat Performance Analysis

960 kbp benchmark

- Single node
 - Nlocal 80000
 - o Nghost 8300
 - MPI < 3%
 - o compute 88% (LMP)
 - o acos 12%
 - \circ q_to_exyz 12%
- 2048 MPI-tasks
 - Nlocal 940
 - o Nghost 480
 - MPI < 13%
 - o compute 82% (LMP)

Applications

Stand displacement

Liquid-crystalline states of DNA

DNA tetrahedra

Code Distribution

- LAMMPS version via CCPForge
 - o <u>https://ccpforge.cse.rl.ac.uk/gf</u>
 - Project: Coarse-Grained DNA Simulation (cgdna)
 - $_{\odot}$ Anonymous subversion access
 - svn checkout https://ccpforge.cse.rl.ac.uk/svn/cgdna
- In the near future also as LAMMPS USER-package with extended documentation
- Standalone version from <u>https://dna.physics.ox.ac.uk</u>

http://www.archer.ac.uk/training/

- Face-to-face courses
 - timetable, information and registration
 - material from all past courses
- Virtual tutorials & webinars
 - https://www.archer.ac.uk/training/virtual/
 - timetable plus slides and recordings
 - please leave feedback on previous tutorials after viewing material

Goodbye!

Thanks for attending

Please leave feedback at: www.archer.ac.uk/training/feedback/online-course-feedback.php

