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Motivation
• I/O performance is becoming more critical for HPC 

application performance as applications scale up
• Many applications now have an I/O-bound phase

• What is the maximum performance you can expect from 
the ARCHER parallel file systems in production?
• Compared to other HPC parallel I/O setups?

• What are the best file layouts and Lustre striping settings 
for different scenarios?

• How do MPI-IO, NetCDF and HDF5 write performance 
compare?
• …and how do they compare to naïve file-per-process?



Motivation (cont.)
• HPC users and application developers often poorly 

understand parallel I/O performance in terms of:
• what “good” performance actually is on a particular file system;
• what a particular application does;
• what benchmarks illustrate.



Benchmarks: IOR
• Widely used for testing parallel file system performance 

from multiple processes
• Supports: MPI-IO, HDF5, NetCDF

• Investigated as a benchmark but not chosen because:
• the software is opaque with many different options; this hinders 

understanding on what I/O operations are actually being performed;
• the naïve parallel I/O patterns implemented in IOR do not provide a 

good representation of user I/O so the results from the benchmark 
do not provide a useful measure of where the limits of performance 
are for users.



Benchmarks: benchio (SSF)
• Simple Fortran program:

• Writes 3D distributed dataset to single shared file (SSF)
• MPI-IO, HDF5, NetCDF

• Advantages:
• Small number of options: dataset size, number of processes, 

simple to understand what program is doing
• Data distribution closer to many I/O-bound user applications

• Disadvantages:
• Write performance only (read added soon)

• https://github.com/EPCCed/benchio



Why not use IOR?
• IOR is like Linpack

• data decomposition designed to measure maximum IO bandwidth
• imagine 64 data elements on 8 processes
• IOR file: 8 large blocks of 8 contiguous items:

• benchio uses more realistic (but still simple) decomposition
• leads to surprisingly complicated IO patterns

• Imagine 4x4x4 grid split evenly across 8 processes (2x2x2)
• benchio file contains multiple interleaved small blocks of 2 items



Benchmarks: benchio_fpp (FPP)
• FPP = File Per Process
• Derived from benchio:

• Each process writes to own Fortran binary file
• No HDF5, NetCDF support yet

• Need to be careful to ensure that buffering is not used by 
writing large amounts of data per process
• MPI-IO bypasses buffering so not a problem for SSF version



Systems
• ARCHER

• Cray Sonexion Lustre
• Theoretical peak bandwidth: 30 GiB/s

• COSMA5
• DDN GPFS
• Theoretical peak bandwidth: 20 GiB/s

• Also small-scale systems (results not included here)
• RDF – DDN GPFS, single node
• JASMIN – PANASAS, small process counts



Setup
• MPI-IO collective operations used in all cases

• Previous experience shows that this is required for performance

• All compute nodes fully populated
• This is typically how users use the system

• All runs performed during production
• Subject to same contention as all users

• Performance variation:
• Run at approx. 3 day intervals to try and randomise across 

weekdays and times



Single Shared File (SSF)
MPI-IO Comparisons



SSF: ARCHER Lustre



SSF: Lustre/GPFS Comparison



File Per Process (FPP)
Fortran Binary File Comparisons



FPP: ARCHER Lustre



FPP: Lustre/GPFS Comparison



SSF vs. FPP
Comparisons



SSF vs. FPP



SSF vs. FPP
• Simple file-per-process gives better performance at lower node 

counts…
• …and is similar to shared file at higher node counts

• Should always use single striping for FPP on ARCHER:
• Get random failures due to excessive metadata operations otherwise

• Disadvantages to FPP:
• You will probably have to reconstruct the data for any analysis
• For checkpoints, you must use identical decomposition

• FPP worth considering if you can live with constraints
• Both schemes achieve a maximum of ~50% of peak for both 

GPFS and Lustre in production



SSF vs. FPP (cont.)
• SSF can give excellent performance:

• Each I/O client (node) writes a single block of data
• Usually requires significant internal communication to reorganise

data layout
• Contingent on using well written parallel I/O libraries to perform this 

reorganisation…
• …and this requires parallel collective I/O (without this the 

performance can be orders of magnitude less)
• Advantage that data is often in a format that can be analysed or 

reused at the end of the simulation



Summary and Further Work



Summary
• File-per-process is simple and performs well up to high 

node counts
• Probable cost in data reconstruction
• May be useful for pure checkpointing

• Shared file competitive at high node counts
• Must use MPI-IO collectives
• Must use maximum stripe count on Lustre
• Stripe size has small effect

• Maximum of ~50% peak file system performance 



Further Work
• Understand where ~50% maximum performance limit 

comes from
• Analyse results for HDF5 and NetCDF
• Extend benchio to benchmark read performance
• Run I/O-bound application benchmarks
• Analyse automatically-gathered Lustre performance 

statistics



Useful Tools
• Pandas:

• Python statistical analysis library
• Invaluable for exploring data with multiple classification 

characteristics

• Seaborn:
• Python statistical plotting library
• Visual exploration of data
• Simple plotting of complex data visualisations



Efficient Parallel I/O Course
• ARCHER Training
• 29-30 March 2017
• University of Durham
• Free for all attendees

• http://www.archer.ac.uk/training/
• Provide access to ARCHER during the course but lessons 

are generic for all parallel file systems


