
A brief introduction to C++

Rupert Nash
r.nash@epcc.ed.ac.uk

13 June 2018

1

r.nash@epcc.ed.ac.uk

References

I Bjarne Stroustrup, “Programming: Principles and Practice
Using C++” (2nd Ed.). Assumes very little but it’s long

I Bjarne Stroustrup, “A Tour of C++”. Assumes you’re an
experience programmer and is quite brief.

I Best online reference I’ve found is
http://en.cppreference.com/ (Comes other human
languages too!)

I Scott Meyers, “Effective Modern C++”, 2014. This is the
book to get once you know your way around C++, but you
want to improve. Teaches lots of techniques and rules of
thumb for writing correct, idiomatic, maintainable code.

I stackoverflow.com has a lot of good questions about C++
(look for ones with at least 100 up-votes).

2

http://en.cppreference.com/
stackoverflow.com

Misunderstood monsters: Frankenstein’s vs. C++

1

1By Universal Studios - Dr. Macro, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3558176

3

Misunderstood monsters: Frankenstein’s vs. C++

I Large: the C++11 standard is about 1300 pages

I Composed of many parts: C, classes, generics, functional
programming, exceptions, the vast library, . . .

I Inspires dread in those do not understand it

I Dangerous: “C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do it blows your whole
leg off.” – Bjarne Stroustrup

I “Expert friendly”

3

Octopus vs Swiss Army knife

“C++ is an octopus made by nailing extra legs onto a dog” –
Steve Taylor

But you can cut off some extra legs to get the right dog for your
program!

4

The philosophy of C++

I General purpose

I Flexible by allowing developers to build abstractions (and
provides a large number through the library)

I Performance and efficiency always targeted “You only pay for
what you use”

I Use the powerful type system to express intent.

5

These few lectures

We could spend all semester going in depth on C++, but we’ve
got three lectures plus a “drop in”.
So I’ve picked a handful of features to cover today that you really
need to write C++ for HPC:

I References and memory

I Overloading

I Classes

I Templates

6

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

$ g++ --std=c++11 hello.cpp -o hello

$./hello

Hello , world!

7

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

$ g++ --std=c++11 hello.cpp -o hello

$./hello

Hello , world!

7

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

Include the iostream standard library header which gives us a way
to communicate with the file system

8

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

std is the standard library namespace. A namespace allows
scoping of names (much like a filesystem has directories).

The scope resolution operator :: lets us access a declaration from
inside a namespace.

9

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

cout represents console output (i.e. stdout)

10

Hello!

#include <iostream >

int main(int argc , char* argv []) {

std::cout << "Hello , world!" << std::endl;

}

The standard library uses the bitwise left shift operator (<<) to
mean stream insertion - i.e. output the right hand side to the left.

(Similarly, the right shift (>>) operator is used for extraction, i.e.
input.)

11

Don’t use malloc again

While you can use malloc and free in C++, you should not.
Instead, if you need to directly allocate memory use new and
delete.

int* x = nullptr;

x = new int;

*x = 42;

std::cout << "The answer is "<< *x <<std::endl;

// The answer is 42

delete x;

12

Slightly different for arrays

int* squares = nullptr;

squares = new int [5];

for (auto i=0; i<5; ++i)

squares[i] = i*i;

// Do something

delete [] squares;

Note the square brackets!

13

References

As well as pointers and values, C++ has the concept of a
reference. They are like pointers in that they don’t copy the
thing-that-is-referred-to, but syntactically they are just like a value.

double pi = 3.14;

double& pr = pi;

std::cout << pr << std::endl;

void iLoveIntegers(double& x) {

x = 3;

}

iLoveIntegers(pi);

\\ prints 3

std::cout << pi << std::endl;

14

References: whys and whens

References have simpler syntax.
References are safer than pointers: a reference cannot be null and
cannot be reseated (must be bound when it’s defined)

double twopi = 6.24;

pr = twopi; \\ Error will not compile

And you can rely on it being valid, unless there is an evil coder
around:

char& get() {

char x = ’!’;

return x;

// Many compilers will warn about this

}

Use a reference by default, until you need a pointer. (E.g. need to
reseat or interface with C.)

15

Function overloading

You can have multiple functions with the same name but different
arguments.

int sum(int a, int b) {

return a + b;

}

double sum(double a, double b) {

return a + b;

}

When you call sum, the compiler knows the types of the arguments
and will try to find the best match from all the candidates with the
name.

The compiler will also try to use any built-in or user-defined
conversion rules.

16

What happens here?

int i1 = 1;

int i2 = 2;

double d1 = 1.0;

double d2 = 2.0;

unsigned u42 = 42;

std::cout << sum(i1 , i2) << std::endl;

std::cout << sum(3, 72) << std::endl;

std::cout << sum(i1 , u42) << std::endl;

std::cout << sum(d2 , d1) << std::endl;

std::cout << sum(d2 , i1) << std::endl;

std::cout << sum(d2 , 1.0f) << std::endl;

17

Operators are functions

C++ operators, for the non-built in types, are just functions with
odd names, e.g.:

Vector operator +(const Vector& a,

const Vector& b);

You can then use the natural syntax when manipulating these in
other code:

Vector c = a + b;

We’ll come back to this.

18

Objects in C++

You define a class just like a struct, but using the keyword class

instead.1

As well as data members, instantiations of classes (i.e. objects)
can have member functions.

class Complex {

public:

Complex ();

Complex(float re , float im);

Complex(const Complex &) = default;

float magnitude () const;

private:

float real;

float imag;

};
1Technically, the only difference is the default visibility of declarations.

19

Creating complexes

When you create an instance of your class, you usually need to
provide a constructor. Note we provide two overloads - a default
one needing no arguments and one that initialises with a value.
We also tell the compiler to create a default copy constructor for
us.

Complex :: Complex () :

real(0), imag (0) {

}

Complex :: Complex(float re , float im) :

real(re), imag(im) {

}

// This is roughly what the compiler will create

// Complex :: Complex(const Complex& c) :

// real(c.real), imag(c.imag) {

// }

20

Creating complexes

We can now create these numbers

Complex zero;

Complex imaginary_unit (0, 1);

Complex copy_of_i(imaginary_unit);

What about actually doing something?

21

float Complex :: magnitude () const {

return sqrt(real*real + imag*imag);

}

I The const at the end of the declaration says that this
function will not alter the instance it is working on. Add this
whenever possible!

I We can access the members by just giving their names.

I The instance that the function is working on is also available
as a pointer, called this, so could rewrite as:

float Complex :: magnitude () const {

return this ->real*this ->real +

this ->imag*this ->imag;

}

22

Complex numbers have the usual arithmetic operations: (+ −×÷)
We have to provide operator overloads, like

Complex operator +(const Complex& a,

const Complex& b) {

return Complex{a.real+b.real , a.imag+b.imag};

}

This is just a function (with an unusual name) that takes two
complex numbers and returns one.
To let this function touch the private members of the class, we
must declare that it is a friend:

class Complex {

// ...

friend Complex operator +(const Complex&, const Complex &);

};

23

Templates 101

Templates are a method of doing metaprogramming: a program
that writes a program.

An easy example:

int sum(int a, int b) {

return a+b;

}

double sum(double a, double b) {

return a+b;

}

What if we need this for float and unsigned?
Going to get boring and hard to maintain quickly!

24

Templates 101

Templates are a method of doing metaprogramming: a program
that writes a program.

An easy example:

template <class T>

T sum(T a, T b) {

return a+b;

}

When you use it later, the compiler will substitute the types you
supply for T and then try to compile the template.

cout <<"add unsigned=" << sum(1U, 4U) << endl;

cout <<"add floats=" << sum (1.0f, 4e-2f) << endl;

24

Template classes

You can define a template class - i.e. a template that will produce
a class when you instatiate it.
Let’s build something useful, like a simple array class.

template <class T>

class Array {

unsigned _size;

T* _data;

public:

Array ();

Array(unsigned n);

~Array ();

unsigned size() const;

const T& operator [](unsigned i) const;

T& operator [](unsigned i);

};

25

Where to put your implementation?

Templates are not executable code - they tell the compiler how to
create it. So the definition must be available to the user of your
template - i.e. typically in a header file.
You can define the functions in place like:

template <class T>

class Array {

public:

Array () : _size (0), _data(nullptr) {}

};

Or at the end of the header (or equivalently in another file that
you include at the end of your header)

template <class T>

Array <T>:: Array(unsigned n) : _size(n) {

_data = new T[n];

}
26

How to release that memory?

We have acquired some memory in the constructor and at the
moment we will leak this.
Typically a class’s destructor will do this.
The name of this function is ~Array

template <class T>

Array <T>::~ Array () {

delete [] _data;

}

It’s important to note that you should never call this directly - the
compiler will call it for you when your Array objects:

I go out of scope (i.e. local variables)

I are deleted

I belong to another object and that object is destructed

27

RAII / CADRe

A very important pattern in C++ is RAII: resource allocation is
instantiation. Also known as constructor acquires, destructor
releases.
This odd name is trying to communicate that any resource you
have (heap memory in this case) should be tied to the lifetime of
an object. So the when the compiler destroys your object it will
release the resource (e.g. memory).

void do_simulation(Parameters& p) {

Array <float > work_array(p.problem_size);

initial_condition(work_array);

for(int i=0; i<p.timesteps; ++i) {

do_timestep(work_array);

}

write_output(p.outfile , work_array);

}

28

Copying

One thing we’ve not discussed about this array is what do we want
to do about copying?

I We could create a shallow copy, using a simple pointer copy,
but then which instance owns the data?

I We could instead do a deep copy of the data each time, but
that might be expensive. Maybe we want to disallow implicit
copying but allow a user to explicitly copy with a special
copy() method?

These design decisions should be considered!

29

Returning an Array

What happens if we compute an array in a function and return it?

Array <int > load(const string& fn) {

auto n = getsize(fn);

Array <int > ans(n);

for (auto i=0; i<n; ++i)

ans[i] = read(fn , i);

return ans;

}

void user() {

Array <int > data = load(fn);

}

30

Returning an Array

People assume this is what happens:

Array <int > load(const string& fn) {

auto n = getsize(fn);

Array <int > ans(n); // allocate

for (auto i=0; i<n; ++i)

ans[i] = read(fn , i);

return ans; // copy to a temporary

}

void user() {

// Call default c’tor

Array <int > data = load(fn); // copy tmp ->data

// destroy tmp

}

31

Returning an Array

Alternative: return a pointer

Array <int >* load(const string& fn) {

auto n = getsize(fn);

// OMG - new!

auto ans = new Array <int >(n); // allocate twice

for (auto i=0; i<n; ++i)

// UGLY!

(*ans)[i] = read(fn , i);

return ans;

}

void user() {

auto data = load(fn);

// Better remember to delete this!

}

32

Returning an Array

Alternative: pass an output argument by reference

void load(const string& fn , Array <int >& ans) {

auto n = getsize(fn);

ans.resize(n); // probably allocate

for (auto i=0; i<n; ++i)

ans[i] = read(fn , i);

}

void user() {

// Have to declare outside factory function :(

Array <int > data;

load(fn , data); // No copy :)

// Regressing to assembly :(

}

33

Returning an Array

Alternative: don’t copy - move
Need to define a new move constructor and assignment

template <class T>

class Array {

public:

Array(Array && other) :

_size(other._size), _data(other._data) {

other._data = nullptr;

other._size = 0;

}

};

The double ampersand indicates an “r-value reference”.
The compiler will only use this when the argument is a temporary
value that is going to be destructed - you can safely steal its
resources.

34

Returning an Array

Alternative: don’t copy - move

Array <int > load(const string& fn) {

auto n = getsize(fn);

Array <int > ans(n); // Construct

for (auto i=0; i<n; ++i)

ans[i] = read(fn , i);

return ans; // This moves to the temporary

}

void user() {

Array <int > data = load(fn); // temporary moved to data

// temporary destructed

}

35

Returning an Array

Compilers are allowed to do copy elision (even when this may have
side effects!) to directly construct the return value in its
destination

// Compiler adds secret arg

Array <int > load(const string& fn) {

auto n = getsize(fn);

Array <int > ans(n); // Alias ans to secret

// Construct

for (auto i=0; i<n; ++i)

ans[i] = read(fn , i);

return ans; // No-op

}

void user() {

// Create empty space for data

Array <int > data = load(fn); // pass data as secret arg

}

In C++17 this is required

36

	Introduction
	But first...
	Memory and references
	Overloading
	Classes
	Templates

